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Abstract

Generalization is a key challenge in machine learning, specifically in reasoning
tasks, where models are expected to solve problems more complex than those
encountered during training. Existing approaches typically train reasoning models
in an end-to-end fashion, directly mapping input instances to solutions. While
this allows models to learn useful heuristics from data, it often results in limited
generalization beyond the training distribution. In this work, we propose a novel
approach to reasoning generalization by learning energy landscapes over the solu-
tion spaces of smaller, more tractable subproblems. At test time, we construct a
global energy landscape for a given problem by combining the energy functions
of multiple subproblems. This compositional approach enables the incorporation
of additional constraints during inference, allowing the construction of energy
landscapes for problems of increasing difficulty. To improve the sample quality
from this newly constructed energy landscape, we introduce Parallel Energy Mini-
mization (PEM). We evaluate our approach on a wide set of reasoning problems.
Our method outperforms existing state-of-the-art methods, demonstrating its ability
to generalize to larger and more complex problems. Project website can be found
at: https://alexoarga.github.io/compositional_reasoning/

1 Introduction

Being able to solve complex reasoning problems, such as logical reasoning, combinatorial puzzles
and symbolic manipulation, is one of the key challenges in machine learning. This is particularly
interesting because it requires models to go beyond pattern recognition. For a model to successfully
perform reasoning tasks, it is expected to be able to generalize to unseen distributions during test time.
That is, they are expected to solve not only problems similar to those encountered during training, but
also to be able to generalize to novel conditions and distributions [9].

The standard paradigm in machine learning for solving reasoning tasks is to train models end-to-end
to map inputs to outputs. During training, models are exposed to a large number of solutions and
learn statistical heuristics that allow them to solve similar problems. This contrasts with human
reasoning, where we first learn the rules and constraints governing a problem, and then apply them
in a compositional manner to arrive at a solution. Notably, humans are able to solve such problems
without having seen an exact solution before. Moreover, when prompted with harder tasks, we can
invest more time, effectively searching for a solution, rather than relying on heuristics [, 37].

In this work, we present an approach to reasoning where the overall process is cast as an optimization
problem [22]. Specifically, we learn an energy function Ey(x,y) across all possible solutions y
of the problem, where x are the given conditions of the problem. This energy function is learned
such that valid solutions are assigned lower energy, while invalid solutions receive higher energy.
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Figure 1: Compositional Generalizable Reasoning. We formulate reasoning as optimization problem with
inputs & and solutions y. By combining multiple optimization objectives, we can generalize to larger problem
instances (bottom) than those seen during training (top). This enables us to solve a complex instance of N-queens
(left) or a more complex instance of graph coloring (right).

Reasoning corresponds to minimizing the energy function to find low-energy solutions. Harder
problems can be solved by spending more time reasoning and minimizing the optimization objective.

To solve more complex problems than those seen during training (see Figure 1), we can jointly
reason and minimize the sum of several optimization objectives at the same time. For instance,
in logical reasoning, we can learn the energy landscape of individual clauses, and then optimize
over multiple clauses simultaneously. This composition of energy objectives enables the model to
find assignments that satisfy all clauses simultaneously, enabling it to solve larger, more complex
problems. However, combining multiple objectives makes the landscape increasingly complex and
introduces local minima, making it hard to optimize. To address this, we propose a parallel strategy
where we use a system of particles for optimization. In this setup, we leverage the energy function as
a resampling mechanism to improve the quality of the samples and avoid local minima that attract
particles. This approach improves exploration and ultimately makes optimization more effective.

We illustrate the applicability of our approach across a set of difficult reasoning problems, including
the N-Queens, 3-SAT and the Graph Coloring. We compare against domain-specific state of the
art combinatorial optimization models, and show that our approach outperforms them in terms of
solution quality and generalization to larger and more complex problems. We further show that, by
adjusting the computational budget, we can adapt the model to solve more complex problems. Finally,
ablation studies show that our training strategy leads to improved results and that our sampling
strategy is able to produce better quality solutions than existing samplers.

Overall, the contributions of this work are threefold. First, we propose a compositional approach
to reasoning generalization, where we combine energy landscapes during inference to solve more
complex problems. Second, we introduce a new sampling strategy, Parallel Energy Minimization
(PEM), a particle-based optimization strategy that enables us to effectively optimize composed energy
functions to solve hard reasoning tasks. Finally, we illustrate the efficacy of our approach empirically
across a wide set of reasoning tasks, outperforming many existing combinatorial optimization
approaches in generalization.

2 Related work

Reasoning as Optimization. Reasoning includes multiple cognitive processes, such as logical infer-
ence, decision-making, planning, and scheduling. Many of these can be formulated as optimization
problems, where the goal is to find variable assignments that minimize an objective function under
certain constraints. Prior works have integrated logical reasoning into neural networks through
differentiable relaxations of SAT [26] and MAXSAT solvers [64], differentiable theorem proving
[53, 47], probabilistic logic [45], differentiable logic rules [59], and gradient-based methods for
discrete distributions [49]. Other approaches incorporate continuous optimization directly into models
via differentiable convex [2], quadratic [5] or integer solvers [61]. These methods, however, often
target specific domains or rely on strong assumptions.

Another line formulates reasoning using general-purpose optimization frameworks. For instance,
[54, 15] simulate physical dynamics using energy minimization. Latent space optimization has been
used in variational methods for molecule generation [28] and the Traveling Salesman Problem (TSP)
[35]. More related to our work, [22] learns energy functions backpropagating through optimization
steps or with diffusion-based losses [23]. Nonetheless, most of these approaches adopt end-to-



end methods to learn reasoning tasks, limiting their generalization ability. We instead propose a
compositional strategy, combining energy landscapes learned on subproblems to tackle larger tasks.

Finally, recent approaches focus on learning-based methods for Combinatorial Optimization (CO),
which aim to reduce the computational cost by generating near-optimal solutions. Graph Neural
Networks (GNNs) are the standard in this domain due to their ability to represent variable-constraint
relations. Recent works have employed GNNs to directly predict solutions [10, 36, 55], learning
discrete diffusion over graphs [60, 42], using reinforcement learning [8, 3] or learning Markov
processes [72]. However, it is well known that GNNs struggle out of distribution [67, 27] and require
large, diverse datasets. Our approach leverages the compositional nature of reasoning problems by
producing more generalizable energy landscapes combining multiple energy objectives.

Reasoning as Iterative Computation. Some strategies use neural networks to iteratively refine
solutions to reasoning problems. This motivation is drawn from optimization solvers, which operate
with iterative updates. Within this category, we can identify three main directions: (1) methods that
incorporate explicit program representations [30, 52, 12, 70, 48], (2) works based on recurrent neural
networks [29, 38, 13, 69, 18, 56, 70], and (3) techniques that approximate solutions via iterative
refinement [58, 7, 43,42, 64, 44]. In our work, we cast reasoning problems as optimization problems,
hence we use optimization algorithms as refinement steps for solution search.

Energy-Based Models and Diffusion Models. Our work is closely related to Energy-Based Models
(EBMs) [32, 40, 24]. Most of the work in this field has focused on learning probabilistic models over
data [24, 50, 21, 6, 66, 17]. In contrast, we train an EBM for solving reasoning tasks by performing
optimization over the learned energy landscape.

3 Method

3.1 Reasoning as Energy Minimization

Let D = {X, Y} be a dataset of reasoning problems with inputs € R and solutions y € R™. We
wish to find an operator f(-) that can generalize to test problems f(z') where ' € R’ is potentially
larger and more complex than . Let Ey(x,y) : R® x RM — R, be an EBM defined across all
possible solutions y given «x, such that ground-truth solutions y are assigned lower energy. Finding a
solution to the reasoning problem corresponds to finding an assignment g such that:

y = argmin Fy(x,y) 1
y

To find the solution g, one can use gradient descent:
y' =y - AVyEp(z,y" ) )

where ) is the step size, and y° is the initial solution drawn from a fixed noise distribution (e.g.
Gaussian). The resulting solution y” is found after 7 iterations of the above update.

Diffusion Energy-Based Models. The effective training of EBMs is a challenging task, and currently,
many approaches exist in the literature for this purpose [24, 11, 20]. Previous works trained EBMs by
backpropagating the gradient through T generative steps [22]. However, this could lead to instabilities
in the training and high computational cost of backpropagation.

In this work, we propose instead to use the denoising diffusion training objective introduced in
[20]. Specifically, we train the gradient of the EBM to match the noise distribution at each timestep
t. Formally, given a truth label y from the dataset, and a gaussian corrupted label y*, where
y* = /1 — o,y + ose and € ~ N(0, I) we can define the diffusion objective as:

Lusse(0) = Ey oo, [le+0eVy Bo(y™, 1)]?] ©)
with Ey(y*,t) being a explicitly defined scalar function’, and o a sequence of fixed noise schedules.

This formulation allows us to supervise the gradient of the energy function at each optimization step
t, avoiding the need to backpropagate through a sequence of 7' steps. As a result, we learn an energy
gradient that transforms a noisy input into the target distribution, through a series of optimization
steps. To generate outputs, we can then use, for example, the update rule given in (2).

Empirically, in this work we use the same function as in the original paper, this is, Eg (¢, t) = ||se (21, t)]|?
where sg(z¢,t) is a vector-output neural network.
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Shaping the Energy landscape. The training objective presented in Eq. (7) does not guarantee that
the target label y is assigned the energy minima of the energy landscape. In this work, to enforce
that the energy minima align to the ground-truth label, and to enhance regions of the landscape not
covered by the diffusion-based training, we follow the approach of [23], and introduce an additional
contrastive loss function to shape the energy landscape.

This contrastive loss guides the energy function by comparing noise-corrupted labels of given pairs
of positive and negative samples. Formally, the objective at step ¢ is formulated as:

B
Lop(f) = —log BT RS B “

where ET = Ep(g™*,t) and E~ = Ey(§~,t), with g+ and g~ being positive and negative noise
corrupted samples respectively, this is, §* = /1 — opy™ +oeand g~ = /1 — oy~ + oyc.

3.2 Compositional Reasoning

We wish to construct a reasoning framework that can generalize to complex problems that are much
harder than those seen at training time, consisting of a significantly greater number of constraints.
To construct an effective energy function to tackle such problems, we propose to decompose the
energy function into smaller ones that are defined over tractable subproblems that have been seen
before. These subproblems are then simpler to handle and represent with energy functions compared
to trying to solve the original problem. In particular, we propose decomposing a full reasoning
problem x into simpler subproblems x = {1, ...,z N}, such that finding a solution y; to each
subproblem x; solves the original problem .

Given this decomposition, let Eg (z,y) be an EBM of the k-th subproblem, where yy is assigned the
lowest energy when it is a solution to subproblem x;. A complete solution g to the original problem
x is obtained by solving all subproblems simultaneously, formally optimizing the composition of
each energy function:
N
§ = argmin y _ Eg (@, yi) ©)
k=1

where g can be found as in (2). We illustrate how to effectively optimize these objectives next.

3.3 Improving Sampling with Parallel Energy Minimization

Optimization over EBMs can be done through approximate methods such as Markov Chain Monte
Carlo (MCMC). MCMC simulates a Markov chain, starting from an initial state yg, drawn from
a noise distribution, with subsequent samples generated from a transition distribution. A common
approach to MCMC sampling in EBMs is Unadjusted Langevin Dynamics (ULA) [24, 50], which is
defined as:

y' =y = AV Ey(z,y' ) + V2N, €~ N(0,1) ©)

where ) is the step size of the optimization method. This essentially corresponds to performing
gradient descent on the energy function with some added noise.

However, such a noisy optimization procedure will often become stuck in local minima, which are
especially prevalent in composed energy landscapes such as Equation 5. In MCMC, a common
technique to more effectively sample from such difficult probability distributions is Sequential Monte
Carlo (SMC) [19], where a set of parallel particles is maintained and evolved over iterations of
sampling to help prevent premature convergence to local minima.

Inspired by this insight, we propose Parallel Energy Minimization (PEM), a parallel optimization
procedure for optimizing composed energy landscapes. We initialize and optimize a parallel set of P
particles across the T steps of optimization as presented in Algorithm 1 and illustrated in Figure 2. At
each optimization step, PEM resamples particles based on their energy values, allowing local minima
to be discarded. To further help particles cover the entire landscape of solutions, we add a predefined
amount of noise to each particle each time they are resampled.
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Input: 7" optimization steps, P particles )
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(t—1) (1) (8 y'"/ are first resampled using weights w'"’ derived from
endyfor C 9T+ aVE(GTY) Eo(y™,t). Next, scheduled Gaussian noise is added to

obtain a new set of resampled particles. Finally, the par-
ticles of the next timestep t—1 are generated optimizing
the gradient of the energy function at time ¢.

return z(

3.4 Refinement of the Energy Landscape

Composing multiple energy objectives together can effectively generate complex energy landscapes
suitable for solving larger problems. However, as the number of objectives increases, the energy
landscape becomes increasingly complex, which can lead to inaccuracies in the overall energy
function. In particular, minima might appear in the function that incorrectly assigns lower energy to
invalid solutions.

To mitigate this issue, we propose a refinement strategy for the composed landscape. Given a set of
N energy functions {E}(zx, yx)}i_,, each trained on a subproblem x*, we refine the composed
energy function using ground-truth solutions y. The resulting training objective is defined as:

N

Laise(0) = By neonlle+0eVy Y ES(y* 1) @)
k=1

having y* = /1 — o4y + o€ and € ~ N(0, ). This refinement helps align energy minima with
valid solutions, correcting inaccuracies and improving robustness.

4 Experiments

4.1 N-Queens Problem

Setup.  The N-queens problem involves placing
N queens on an N x N chessboard such that no two
queens threaten each other, meaning no two queens
can be placed in the same row, column or diagonal.
We evaluate how well different methods can generate
valid solutions to the problem. During training we use
only one single instance of the N-queens problem for
a given value . In our approach, we use the IV rows g gure 3: N-Queens Problem Composition. To
of a single instance to train, and then compose this compose a row model to solve the N-queens prob-
model row-wise, column-wise, and diagonal-wise t0  Jem, we add the energy of each row i (Ej°), each
form a 2D chessboard. That is, we train a model t0  ¢olumn j ( ES’), each diagonal k (EJ*) of the
generate a valid row and then reuse it simultaneously  chessboard. We then sample from the resulting en-
for rows, columns and diagonals (see Figure 3). ergy function E5°*® to generate valid solutions.

Baselines. We compare against existing baselines for neural combinatorial optimization solvers, for
which the N-queens problem is represented as a graph, and the solution corresponds to a Maximum
Independent Set (MIS). As baselines we include: a reinforcement learning approach, where the
model learns to defer harder nodes when solving the problem (LWD, [3]), an unsupervised method,
where the model learns a Markov decision process over graphs (GFlowNets, [72]), and a supervised
categorical diffusion solver (DIFUSCO, [60]). Furthermore, we also compare against previous state



Correct . s
Model Type Instances Size 1
LWD RL + S 22 7.1000 £ 0.5744 o
GFlowNets UL + S 14 6.9293 + 0.5904
DIFUSCO (T'=50) SL+S 17 6.9400 + 0.6452 7
Fast T2T (Ts=1,Tg=1) SL + S 21 6.8200 + 0.8761
Fast T2T (Ts=1,Tz=1) SL + GS 12 6.7000 & 0.7141
Fast T2T (Ts=5,T¢=5) SL + S 20 7.0600 £ 0.5800 ®
Fast T2T (I's=5,1¢=5) SL + GS 41 7.3800 £ 0.5436 w
EBM (P=1024) (Ours) SL + PEM 97 7.9699 + 0.1714
Table 1: 8-Queens Problem Evaluation. We compare the perfor-

mance against state-of-the-art combinatorial optimization models Figure 4: Energy Map Visualization. Cor-
on the 8-queens solution generation task. All the models were rect solutions (top, left) are assigned low en-
trained with 1 single instance of the 8-queens problem. We sam- ergy (top, right) and incorrect solutions (bot-
pled 100 8-queens solutions. IR: Iterative Refinement, BP: Belief (om, left) are assigned higher energy (bottom,
Propagation, TS: Tree Search, S: Sampling, GS: Guided Sam- rjght). Energy at each position is the sum of

pling, the row, column, and diagonal energy.

Decoded

T=100 T= Solution
Reverse
diffusion
PEM
(P=2)
PEM
(P=8)

Figure 5: Optimized Samples Across Timesteps. Generated samples where yellow squares represent queens
placed in the chessboard. Reverse diffusion fails to find valid solutions (top). Increasing the number of particles
with PEM leads from invalid solutions (middle) to valid solutions (bottom).

of the art combinatorial optimization models (Fast T2T [42]), with different inference steps 7 and
gradient search steps T};. For the latter, we also compared against the guided sampling version, where
a penalty function is added for the MIS problem to guide denoising.

For all the methods evaluated, we report the number of correct instances of the problem found, and
the average number of queens placed in the chessboard. We follow previous works approach to
decode solutions, where, given a model heatmap of the chessboard, we perform greedy decoding by
sequentially placing queens in the board until a conflict is found.

Quantitative Results. We report the comparison of our approach with the previous baselines in
Table 1. For all the methods reported, we sampled 100 different solutions. In this table, we can see
that our approach is able to generate nearly all perfect solutions to the problem. Furthermore, our
method significantly outperforms the previous state-of-the-art solvers. Out of 100 generated samples,
97 are valid 8-queens solutions, while state-of-the-art methods are able to find 41 correct instances at
most.

Qualitative Results. In Figure 5 we visualize the sampling process of our approach using reverse
diffusion and PEM. We can observe that PEM is able to generate much better quality samples than
reverse diffusion. Additionally, more particles leads to the generation of valid solutions. We include
an example of parallel sampling with 8 particles in Appendix B. In Figure 4 we can see that a higher
energy is assigned to rows and columns where the constraints are violated.

Performance with Increased Computation. In Table 2 we report the performance of our approach
on the 8-queens problem with increasing number of particles during sampling. We show that
increasing the number of particles significantly improves the quality of the generated samples and,
as a consequence, a larger number of correct instances are found. In Figure 6, we visualize the
performance of our model with different number of particles on different complexity levels of the
problem. We can see that by adjusting the number of particles, we can adapt the ability of our model
to solve more difficult problems.
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Num. Correct Size %
Particles Instances 1 g %
8 9 6.6599 £ 0.7550 s
64 34 7.2500 + 0.6092 £ . /
128 87 7.8800 £ 0.3265 © o e
256 89 7.9000 £ 0.3015 0 o 10
512 92 7.9400 £ 0.2386 8 Number of Particler 28
1024 97 7.9699 + 0.1714

Figure 6: Number of Particles vs Correct Instances
Table 2: Number of Particles vs Correct Instances. Across Problem Difficulties. We sampled 100 solu-
We sampled 100 solutions from the 8-queens problem. tions each from N-queens problems of increasing diffi-
Increasing the number of particles with PEM signifi- culty (7 to 10 queens). In all cases, a higher number of

cantly improves the number of correct instances. particles results in more correct instances.

Sampler In(s:t(; I:::: 4 Size 1 Diffusion Contrastive Correct Satisfied
Loss Loss Instances 1 Clauses T

Reverse Diffusion 12 2.6400 £ 0.7722

MALA 8 2.6700 + 0.6824 Yes No 6 6.6799 + 0.7089

UHMC 9 2.6700 + 0.6971 Yes Yes 97 7.9699 £ 0.1714

HMC 11 2.6900 + 0.7204

PEM (P=8) 99 3.9900 =+ 0.1000 Table 4: Loss Ablation. Ablations proposed for the loss

function on the performance on the 8-queens problem.
Table 3: Sampler Ablation. Ablations proposed for We sampled 100 solutions from the 8-queens problem.
different samplers. We sampled 100 solutions from the A combination of both a diffusion and contrastive loss
4-queens problem. Compared to other samplers, PEM to shape the landscape produces the best results on the
is able to consistently produce accurate solutions. task. In all cases we sampled using PEM (P=1024).

Ablation Study. In Table 3, we compare the performance with different methods proposed for
EBM sampling, including Unadjusted Langevin Dynamics (ULA), Metropolis Adjusted Langevin
Dynamics (MALA), Unadjusted Hamiltonian Monte Carlo (UHMC) and Hamiltonian Monte Carlo
(HMC). We show that our approach substantially outperforms existing samplers in the 4-queens
task. In Table 4, we compare three models trained with different loss functions. We show that the
combination of the diffusion and contrastive losses produces improved results on the task.

4.2 SAT Problem

Setup. In this section we evaluate the performance of our approach on the Boolean satisfiability
problem (SAT), well known to be an NP-complete problem. The 3-SAT problem is a binary decision
problem where a Boolean formula is given in Conjunctive Normal Form (CNF), with each clause
having exactly 3 literals. The task is to find a truth assignment to the variables (true or false) such
that the formula evaluates to true. For training, we generated random 3-SAT instances with number
of variables within [10, 20]. The number of clauses was set to be in phase transition, that is, it was
set to be 4.258 x n, where n is the number of variables [57]. For our approach, we train a model
to generate a satisfiable assignment to only one individual clause of the 3-SAT problem. We then
compose the model to generate a solution to the entire problem. This enables the generalization to
an arbitrary number of clauses. We evaluate using the SATLIB benchmark [34]. For a distribution
similar to the training one, we used 100 instances with 20 variables and 91 clauses. For a larger
distribution, we used 100 instances with 50 variables and 218 clauses.

Baselines. We compare against existing baselines for neural SAT solvers, including: the seminal
neural SAT solver, where the solution is iteratively refined with increasing number of steps (NeuroSAT
[58]), and the state-of-the-art neural solver based on belief-propagation (NSNet [43]). In both cases,
we use different number of steps T for solution refinement. When feasible, we also compare with
combinatorial optimization models by encoding the 3-SAT problem as a graph.

Quantitative Results. In Table 5 we find that our method significantly outperforms the previous
state-of-the-art neural SAT solvers, and is able to find a larger number of correct instances of the
problem. In the similar distribution 91 instances are solved compared to 58 instances solved by
NSNet. In the larger distribution our method still outperforms the previous other methods with 43
correct instances, with NSNet solving 37 correct instances.



Similar Distribution

Larger Distribution

Model Type Correct Satisfied Correct Satisfied
Instances 1 Clauses 1 Instances 1 Clauses 1
GCN SL 5 0.9617 4+ 0.0264 0 0.9569 + 0.0203
DGL SL + TS 10 0.9520 4 0.0330 0 0.8705 4 0.0405
DIFUSCO (T = 50) SL + S 6 0.9734 + 0.0156 0 0.9738 £ 0.0156
Fast T2T (Ts=1,T¢=1) SL + S 23 0.9749 4+ 0.0210 4 0.9751 £ 0.0141
Fast T2T (Ts=5,T¢=5) SL + S 22 0.9760 + 0.0273 20 0.9734 4+ 0.0159
NeuroSAT (T=50) SL + IR 6 0.9661 + 0.0185 0 0.9651 +0.0110
NeuroSAT (T'=500) SL + IR 8 0.9742 + 0.0154 0 0.9697 £ 0.0111
NSNet (T'=50) SL + BP 58 0.9845 + 0.0272 34 0.9817 4 0.0237
NSNet (7'=500) SL + BP 58 0.9856 + 0.0266 37 0.9846 + 0.0205
EBM (P=1024) (Ours) SL + PEM 91 0.9985 + 0.0048 43 0.9963 + 0.0046

Table 5: 3-SAT Problem Evaluation. We compare the performance against the state-of-the-art combinatorial
optimization models and neural SAT solvers on the 3-SAT task. Models are evaluated on a distribution similar to
the training distribution and a larger distribution. Similar distribution has 100 instances with 20 variables and 91
clauses, while larger distribution has 100 instances with 50 variables and 218 clauses. Our approach outperforms
existing methods. IR: Iterative Refinement, BP: Belief Propagation, TS: Tree Search, S: Sampling,

Similar Distribution

Larger Distribution . . Correct Satisfied
Finetuning
Num. Correct Satisfied Correct Satisfied Instances 1 Clauses 1
Particles Instances T Clauses T Instances T Clauses 1 No 57 0.9951 + 0.0068
3 30 0.9874 2 0.9910 Yes 91 0.9985 + 0.0048
64 70 0.9962 7 0.9910
128 78 0.9975 18 0.9927 Table 7: Fine-tuning Ablation. Abla-
1024 91 0.9985 43 0.9963 tions proposed for the finetuning of the

model on the performance on the 3-SAT
Table 6: Number of Particles vs 3-SAT Performance. We compare problem. We show that finetuning the
the evaluation performance of our approach on the 3-SAT problem composed model with complete instances
with increasing number of particles. Increasing the number of particles leads to better performance. In all cases
substantially improves the generalization performance of the model. we sampled using PEM (P=1024).

Qualitative Results. In Appendix B, we present additional qualitative results for 3-SAT, where we
show that unsatisfied clauses are assigned higher energy, while satisfied clauses are assigned lower.

Performance with Increased Computation. We assess in Table 6, the impact of the number of
particles on the performance on the 3-SAT problem. We show that increasing the number of particles
improves the results on both the similar and larger distributions. By formulating the problem as an en-
ergy minimization problem, we can adjust the number of particles to adapt to the difficulty of the task.

Ablation Study. In Appendix C we include ablation for the sampling procedure, showing that PEM
outperforms existing methods, as well as ablations on the training loss. Moreover, in Table 7 we
report that finetuning the composed model improves the overall performance.

4.3 Graph Coloring

Setup. In this section, we evaluate our approach on the graphical problem of graph coloring. Given
a graph instance, the task is to assign a color to each node in the graph such that no two adjacent
nodes share the same color using at most & colors. This problem is known to be NP-complete. The
chromatic number x of a graph is the minimum number of colors needed to color the graph. To train
baselines, we followed the same approach as in [41], and generated random graphs with number
of nodes within [20, 40], density within [0.01, 0.5], and chromatic number  within [3, 8]. For our
approach, we train a model to generate a valid coloring of an individual edge given a set of colors.
We then compose the model for all the edges of the graph to generate a valid coloring solution. To
train our model we generate random pairs of different colors. For evaluation, we use graphs from
the well-known COLOR benchmark'. Additionally, we also evaluate on random graph instances
generated following different graph distributions, namely: Erdos-Renyi [25], Holme-Kim [33], and
random regular expander graphs [4]. For each distribution, we generate smaller graphs with nodes
within [20, 40] and larger graphs with nodes within [80, 100]. Moreover, we also evaluate on densely
connected regular graphs such as Paley graphs [51] and complete graphs. For all the methods, we

'https://mat.tepper.cmu.edu/COLORO2/
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(a) Original Graph  (b) Correct Solution (c) Correct Solution (d) Incorrect Solution (e) Incorrect Solution
Energy Energy

Figure 7: Qualitative Illustration of Energy Maps. We show a graph instance (a) along with a valid solution in
(b). In (c), we visualize the energy map of a correct solution, where we show the energy of each edge individually.
We present an incorrect solution with two conflicting edges in (d) and the corresponding energy for each edge in
(e). As expected, a higher energy is assigned to conflicting edges.

Distribution y £ d X GCN GAT XLVIN GNN-GCP Elﬁi f%‘; s)
Erdos Renyi [20,39]  [2976] 0.12 [3.4] 46.80 + 20.47 34.00+ 11.55 2500+ 7.81 1520+ 4.32 860+ 4.82

[81,99] [193,225] 005 [3.4] 151.60+ 12.09 130.20+ 11.47 93.80+31.12 53.80+ 834 29.20+ 8.05
Holme Kim [22.34]  [56,92] 026 [4.4] 7400+ 1474 5120+ 10.03 29.00+ 7.75 13.20+ 7.46 10.60+ 2.70

[86,100] [398,469] 0.10 [5,6] 408.00+ 26.40 253.20+ 50.71 182.60 £24.73 55.20+£12.63 59.00+ 3.74
Regular Expander  [21, 40] [63,120] 022 [4,4] 87.60+ 22.58 58.60+ 1244 29.00+ 7.75 1540+ 6.65 11.00+ 4.89
[86,100] [184,200] 023 [3.3] 144.80+ 6.90 118.80+ 12.59 112.60+10.97 141.60 £69.47 37.20+ 4.71
Paley [19,37] [171,465] 0.80 [6,10] 285.00£117.70 239.20 4 159.43 151.80 £92.13 91.20 £63.14 34.80 £20.27
Complete [8,12] [36, 66] 1.00 [8,12] 46.00+ 15.04 46.00+ 15.04 34.80+16.42 30.00+ 2.54 340+ 1.14

Table 8: Graph Coloring Evaluation. We compare the performance against canonical GNNs and GNN-based
methods for graph coloring on different random graph distributions and the COLOR benchmark. Performance
is measured as the number of conflicting edges, with lower indicating better. For each distribution, we report
the average over five instances. Our approach outperforms existing methods on most instances and generalizes
better to larger and denser graphs. Here V= Nodes, £= Edges, d= Average density, y= Chromatic number.

generate a coloring of the graph with k colors, where & is the chromatic number of the given graph,
and report the number of conflicting edges in the generated solution.

Baselines. We compare against existing baselines for neural solvers for graph coloring that are
trained to generalize to novel graph instances (GNN-GCP [41]). We also include a comparison with
canonical Graph Neural Networks (GCN [39] and GAT [62]), and RL guided by Neural Algorithmic
Reasoners (XLVIN [16]).

Quantitative Results. We compare our approach with GNN-based methods for graph coloring. In
Table 8, we report the performance on random graphs generated following different distributions and
the average performance on the COLOR benchmark. We show that our approach is able to generalize
to larger graphs and different distributions better than existing methods. The detailed performance on
the COLOR benchmark can be found in Appendix B, where our approach significantly outperforms
existing methods. Notably, while GNN-based methods show increasingly worse performance on
larger graphs, our method maintains a good performance across scales.

Qualitative Results. We present in Figure 7 a graph instance with a valid coloring solution. We
visualize the energy map and show that low energy is assigned to all the edges that compose the
whole graph. We also show an incorrect solution with two conflicting edges. The energy of the two
conflicting edges is higher than the non-conflicting ones.

Performance with Increased Computation. In Appendix B we report that increasing the number
of particles from 8 to 1024 decreases the average number of conflicting edges from 15.0 to 8.0.

Ablation Study. We include in Appendix C ablations on the sampling procedure, which yields 8.0
conflicting edges on average with PEM compared to 12.3 edges with UHMC. Additionally, we ablate
the training losses, where we obtain an average of 15.0 conflicting edges with diffusion loss only and
9.0 when using contrastive loss only.

4.4 Crosswords

Setup. In this section, we report the results on crosswords puzzle solving. Crosswords are word
puzzles where letters are arranged in a grid, with words intersecting both horizontally and vertically.
Each word is associated with a clue that provides a definition, context or hint for the answer. The goal
is to fill the grid so that all words satisfy both the clues and the grid constraints. For our approach, we
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Figure 8: Optimized Samples Across Timesteps and Particles. We show samples y(t) generated on the
crossword puzzle with PEM (P=8) at timestep ¢ for different particles P;, where ¢ indicates the particle number.
The given crossword has five horizontal clues and five vertical clues. At the end of the optimization process, the
PEM is able to generate valid solutions to the puzzle. Cells in red indicate incorrect letters.

train a model to generate a valid word given precomputed embeddings of the corresponding hint. To
solve a complete crossword, we compose horizontally and vertically the model to form the given grid.
‘We evaluate on the Crosswords Mini Benchmark introduced in [71].

Baselines. We compare against different inference  “poqel Letter Success Rate  Word Success Rate
algorithms for Large Language Models, including: T 387 140
Standard Input-Output (I0), Chain of Thought (CoT)  CoT 40.6 15.6
[65] and Tree of Thought (ToT) [71]. E%TM ours) ggg gg-g

Quantitative Results. In Table 9 we compare our
approach with various LLM inference methods. Our
approach significantly outperforms both the 10 and
CoT baselines. Furthermore, it achieves performance
competitive with ToT. While ToT attains a slightly
higher average word success rate (60.0% vs. 50.5%), our method achieves a higher overall grid
completion rate (80.4% vs. 78.0%).

Table 9: Crosswords Evaluation. We compare
against different strategies for LLM inference. We
report the average over 20 crosswords. We used
P=1024 for sampling with PEM.

Qualitative Results. Figure 8 shows the particles generated for a crossword across timesteps. It
can be seen that, during the optimization process, different particles explore different solutions to the
puzzle. In the end, the optimization algorithm successfully finds a valid solution to the crossword.

5 Limitations and Conclusion

Limitations. A limitation of our method is that it assumes a starting Gaussian distribution and
models optimization as a sequence of Gaussian increments. Future work could explore non-Gaussian
objectives and initializations that enable recurrent improvement of initial solutions. Another limitation
is that, while our method excels on N-Queens and 3-SAT, there is still room for improvement in
achieving optimal solutions for graph coloring. Further research could investigate alternative training
strategies for EBMs to produce more accurate energy landscapes

Conclusion. In this work, we propose a novel approach to solving reasoning problems using
EBMs. By formulating the problem as an energy minimization, we decompose them into smaller
subproblems, each with its own energy landscape. We then combine the objective function of each
landscape to construct energy landscapes for more complex instances. To train EBMs, we have
proposed a combination of diffusion and contrastive loss, which yielded superior performance. We
also introduced PEM, a parallel optimization method with an adaptable computation budget for
sampling from the resulting energy functions. Our approach outperforms existing methods on several
reasoning tasks, including N-queens, 3-SAT, graph coloring, and crossword puzzles, pointing to the
promise of this approach.
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Appendix Overview

The Appendix is organized as follows: Section A describes the experimental setting, including
hyperparameters and training details, Section B presents additional quantitative and qualitative results
on the problems considered in the paper, and Section C includes ablation studies on the sampling
procedure and training losses.

A Experimental Settings

A.1 N-Queens Problem

Setup. We used a single instance solution of 8-Queens for both training and validation. For all
approaches, the best model was selected based on the validation performance.

Compositional Approach. In our approach, we train a model using the 8 rows from the instance.
We use each of the rows as targets to be generated by the model. As negative samples, we used a
row without queens and a row with two queens (see Figure 9). In other words, we train a model to
generate a vector of length 8 with exclusively one 1 and seven Os. To compose a 8-queens solver, we
simultaneously add the energy of all rows, columns and diagonals using the same model. For the
diagonals, we pad the rows with zeros to the right. Notice that this composition, as it is, assumes as a
constraint that a queen has to be placed in each diagonal, however, this constraint does not exist in
the original problem. Alternatively, we could have trained two separate models: (1) one for the rows
and columns, where the constraint is to always have one queen placed, and (2) one for the diagonals,
where the constraint is to have either zero or one queen placed. Empirically, we observed that the
single model approach led to better heatmaps than training two separate models for rows/columns
and diagonals.

Training. As a model, we used a 3-layer MLP, with each layer having: layer normalization and 3
linear layers of dimensions 128, 256, 128, followed by a ReLU activation. We added skip connections
for each layer. The model was trained with a learning rate of 1e~* with AdamW optimizer for 20000
epochs with a batch size of 2048. For the contrastive loss, we used a weight of 0.5. For scheduled
noise we used a linear schedule with 7" = 100 timesteps. With a single Nvidia A10 GPU with 24GB
of memory, the model was trained in approximately 5 hours.

Baselines. For all baselines we used the default hyperparameters proposed in each work for MIS
solving on SATLIB unless stated otherwise. To encode the N-queens problem as a MIS problem for
each position of the chessboard we created a node, and then added an edge with each of the other
nodes in the same row, column and diagonal. For LWD we included self-loops for each node. For
GFlowNets, we trained a model with 8 layers for 1500 epochs with batch size of 128. For DIFUSCO
we trained a model with 8 layers for 5000 epochs. For FastT2T we trained a model with 8 layers
for 20000 epochs. In Table 10 we report the wall clock time required to sample 25 solutions of the
N-queens problem for all baselines considered. Results are obtained using a single Nvidia A10 GPU
with 24GB of memory

A.2 3-SAT Problem

Setup. We generated 4000 random satisfiable 3-SAT instances for training and 1000 for validation,
using the cnfgen Python package. For each instance, we randomly sample the number of variables
within [10, 20] and assign a number of clauses equal to 4.258 x n, where n is the number of variables.
This is, we generate samples to be in phase transition , which technically makes it more difficult
instances to solve [57]. For evaluation, we used instances from SATLIB, which are also generated to
be in phase transition. We used 100 satisfiable instances with 20 variables and 91 clauses, and 100
satisfiable instances with 50 variables and 218 clauses. For all approaches considered, the best model
was selected based on validation performance.

Compositional Approach. As a base model, we train a model to generate an assignment that
satisfies a single clause. For instance, given a clause (aVbV—c), two example valid assignments are
(1,0,1) or (0,0,0), where 1=T"rue and 0=False. Notice that for each clause with three literals, we
have seven valid assignments and one invalid assignment. For each clause, as negative sample we use
the invalid assignment, which is given by the negation of the clause. For instance, for the previous
clause (0,0, 1) is not a satisfiable assignment. To obtain the clauses for training we split each of the
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Model Time (s)

LwD 1.16 £ 0.04
GFlowNets 1.124+0.08
DIFUSCO 33.46 = 1.36
FastT2T (Ts=1,Tg=1) 1.82+0.18
FastT2T (IT's=1,Ta=1, GS) 1.91+£0.19
FastT2T (Ts=5, Tg=>5) 3.37+1.12
FastT2T (T's=5, Ta=>5, GS) 7.78 £ 0.60
EBM (P=1024) (Ours) 84.99 £+ 1.61

Table 10: 8-Queens Problem Inference Time. We
report the wall clock time required to generate 25 so-
lutions of the problem. Values are averaged over five

Correct
Instances

Unique

Model Solutions

DeepT 1 1
EBM (P=128) (Ours) 100 37

Table 11: 8-Queens Problem Evaluation. We com-
pare the number of unique solutions generated against
the DeepT approach. While DeepT is a deterministic
approach, our method generates 37 different solutions

different runs. to the problem out of 100 correct instances.

Num. Particles Energy Solution Energy
2 136.62 + 2.26 Random 151.43 £ 3.42
4 136.29 +1.98 One invalid queen  137.33 £ 1.86
8 133.93 &+ 1.67 Correct 130.78 +0.37
16 133.82 £ 2.05
2421 igggg i éég Table 1?: Solution Type vs Energy. We show the
128 132.00 + 1.03 comparison of energy values in the 8-Queens prob-
256 131.84 +0.97 lem for three solution types: incorrect solutions with 8

randomly placed queens, nearly-correct solutions with
one misplaced queen, and correct solutions. Correct
solutions have, on average, the lowest energy values
compared to the other solution types. Values are aver-
aged over five runs.

Table 12: Sampled Energy vs Number of Particles.
A larger number of particles enables sampling lower
energy values in the N-Queens problem. Values are
averaged over five runs.

4000 instances into separate clauses. To compose the models, we add the energy of all clauses that
make an instance.

Training. We trained a 3-layer MLP with skip connections and each layer having layer normalization,
3 linear layers of dimensions 128, 256, 128, followed by a ReLLU activation. As input, we use the
concatenation of the generated sample (dimension 3) and the clause sign (dimension 3). We trained
using the AdamW optimizer with a learning rate of 1e~* for 20000 epochs and batch size 1024. We
used 0.5 for the contrastive loss weight. For finetuning, we trained for an additional 10000 epochs
with a learning rate of 1e~* and batch size 1024. For scheduled noise, we used a linear schedule with
T = 100 timesteps. With a single Nvidia A10 GPU with 24GB of memory, the model was trained in
approximately 12 hours.

Baselines. For all baselines, we used the default hyperparameters proposed in each work for MIS
solving on SATLIB unless stated otherwise. For all the combinatorial optimization models, we
modified the architecture to include the clause sign as input. For GCN, we trained a model with 12
layers for 100 epochs with batch size 256. For DIFUSCO, we trained a model for 250 epochs with
batch size 256. For FastT2T, we trained a model for 500 epochs with batch size 256. With neural SAT
solvers, we used the hyperparameters specified in the corresponding works except for the following:
for both NeuroSAT and NSNet, we trained for 300 epochs with batch size 128.

A.3 Graph Coloring Problem

Baselines. We extend the baselines presented in the main paper to include additional comparisons
with state-of-the-art reasoning Large Language Models (LLMs). In particular, we consider Gemini
2.5 Pro [14], DeepSeek R1 [31], and Qwen 235B-A22B-2507 [68].

Setup. We generated 1000 random graphs following the approach from [41]. The graphs have
number of nodes within [20, 40], density within [0.01, 0.5], and chromatic number x within [3, 8].
We then make a 90-10 split for training and validation. For evaluation, we generated ten random
instances from each of the distributions: Erdos-Renyi, Holme-Kim, and random regular expander
graphs, with five instances with nodes within [20, 40] and five instances with nodes within [80, 100].
Additionally, we generated five Paley graphs with prime numbers between 19 and 37, and complete
graphs from 8 to 12 nodes.
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Figure 9: Negative Samples. (Left) In the N-Queens problem, the model is trained to generate rows containing
exactly one queen. Negative samples consist of invalid rows with no queens or multiple queens. (Middle) For
the 3-SAT problem, the model learns to produce valid assignments for a single clause. The negative sample used
is obtained directly by negating the clause sign. (Right) In the graph coloring problem, the model is trained to
assign different colors to the nodes of an edge. Edges with the same color for both nodes are used as negative
samples.

Compositional Approach. We trained a base model to generate a valid coloring for a single edge.
We define a fixed set of colors, in this case k=14 colors. The model generates a one-hot vector
encoding the left and right colors of the edge (in total, an output of dimension 28). As negative
samples, we used edges with the same color for both nodes. Additionally, to enforce the generation
of valid one-hot vectors, we also used as negatives vectors with random perturbations in a random
position. To compose the model for the whole graph, we add the energy of all edges that compose the
graph.

Training. We trained a 4-layer MLP with skip connections and each layer having layer normalization,
3 linear layers of dimensions 128, 256, 128, followed by a ReL.U activation. We trained using the
AdamW optimizer with a learning rate of 1e~* for 50000 epochs and batch size 1024. We used 0.5 for
the contrastive loss weight. For scheduled noise, we used a linear schedule with 7" = 100 timesteps.
With a single Nvidia A10 GPU with 24GB of memory, the model was trained in approximately 3
hours.

Baselines. For both GCN and GAT, we trained a model with 8 layers with hidden dimension
128, dropout 0.1 with AdamW for 1000 epochs and batch size 512. We train the models using
cross-entropy loss to predict the color of each node out of 14 colors. To train GNN-GCP we follow
the same setting as in the original work and stop the training when the model achieves 82% accuracy
and 0.35 binary cross-entropy loss on the training set averaged over 128 batches containing 16
instances. For XLVIN, we train the XLVIN-CP variant using CartPole-style synthetic graphs and use
the same hyperparameteras reported in the original work.

A.4 Crosswords

Setup. We evaluate approaches based on their ability to solve 5x5 crosswords with 10 words each.
For evaluation, we use the 20 crosswords from the Mini Crosswords dataset from [71]. To train
our approach, we sample 32.7k and 6.8k five-letter words from the Crosswords QA dataset [63] for
training and validation, respectively. Each entry in the dataset consists of a hint and a five-letter word.
To generate embeddings of the hints, we use the text-embedding-3-small model from OpenAl.

Compositional Approach. As a base model, we train a model that, given the embedding of a
hint, is able to generate a five-letter word. We later compose the model to solve a 5x5 crossword by
combining the energy functions of the five horizontal rows and five vertical columns, where each of
the ten words has a separate hint as input.

Training. As a model, we use a 3-layer MLP, with each layer having layer normalization and three
linear layers of dimensions 1024, 1024, and 1024, followed by a ReLU activation. We add skip
connections for each layer. The model receives embeddings of dimension 1536 as input. The model
is trained with a learning rate of 1 x 10~ using the AdamW optimizer for 20,000 epochs with a
batch size of 2048. We did not use contrastive loss for training the model. For scheduled noise, we
use a linear schedule with T'=100 timesteps.
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Figure 10: Optimized Samples Across Timesteps and Particles. We show samples y(t) generated on the
8-queens problem with PEM (P=8) at timestep ¢ for different particles P;, where ¢ indicates the particle number.
In the figure, yellow squares represent queens placed in the chessboard. PEM is able to generate a valid instance
of the 8-queen problem (y* with Py, Ps and Ps). A first valid solution appears at y® with P;.

B Additional Results

B.1 N-queens Problem

Quantitative Results. In Table 11 we provide a quantitative comparison where we compare with
Deep Thinking (DeepT [46]). While we were able to successfully solve the 8-queens problem using
both approaches, the DeepT approach is purely deterministic, producing the same solution each
time. In the case of N-queens, where there are multiple solutions, and no input is provided, this is
a limitation. Using our approach, we are able to generate 37 unique solutions out of 100 sampled
solutions.

Qualitative Results. In Figure 10 we show the samples generated with PEM at different timesteps
and particles. It can be seen that at the end of the sampling process, the procedure reaches a valid
solution for the 8-queens problem. During the optimization process, it can be seen how different
particles partially approximate different solutions until they converge to the same solution.

B.2 3-SAT Problem

Qualitative Results. In Figure 11 we consider an instance of the 3-SAT problem with four clauses
and three variables. We compare two variable assignments: a correct assignment satisfies all clauses,
and an incorrect one that satisfies only three. The figure shows the energy computed by the model for
each clause individually. In the correct solution, all clauses are assigned low energy. In contrast, in
the incorrect solution, the unsatisfied clause has comparatively higher energy than the others. This
highlights how the energy function effectively reflects clause satisfaction. As a consequence, when
the energy of all clauses is composed, a higher energy is assigned to the incorrect solution.
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Figure 11: Qualitative Visualization of Energy Maps. Example of a 3-SAT instance with four clauses and
three variables (top), along with a correct solution (middle) and an incorrect solution (bottom), having 1=True
and O=False. We show the energy of each clause individually. A higher energy is assigned to the clause that
evaluates to false (unsatisfied clause), while clauses that evaluate to true (satisfied clauses) are assigned lower
energy.

Conflicting Edges |
Model Erdos-Renyi Small Erdos-Renyi Large
Gemini 2.5 Pro 20.00 £ 14.22 142.66 £ 6.11
Deepseek R1 4.00+ 3.46 78.00 + 36.38
Qwen 235B-A22B-2507 16.00 £ 13.06 102.66 £ 26.10
PEM (P=128) (Ours) 3.15+ 2.00 45.81 +11.88

Table 15: Comparison of Conflicting Edges across Models. Lower values indicate fewer conflicts. PEM (ours)
achieves the lowest number of conflicting edges across both settings. Values are averaged over five graphs.

B.3 Graph Coloring Problem

Baslines

Quantitative Results. In Table 16 we provide an evalua- —
tion of our approach on the COLOR benchmark. We compare Nu.m. Conflicting
. . . Particles Edges |
against existing methods for graph coloring methods and canon-
ical GNNs. We can see that methods based on GNNs generalize 8 15.0 £2.64
worse with increasingly larger graphs. On the larger graph con- 64 14.3 £3.51
sidered, our approach generates a solution with 69 conflicting 128 10.3 +£2.51
edges, while GNN-GCP generates a solution with 667 conflict- 1024 8.0+ 264
ing edges, and GCN and GAT generate solutions with 1625 and
1454 conﬂicting. edges, respectively. In Tgble 15 we compare Conflicting Edges. We sampled three
our approach with state of the art reasoning Large Language | ions for a given graph instance.
Models on graphs following the Erdos-Renyi distribution. While  pycreasing the number of particles
some models are able to solve complete instances in-context (€.2. with PEM leads on average to more
DeepSeek achieves an average of 4.0 conflicting edges on small  optimal solutions.
Erdos-Renyi graphs), their performance deteriorates as graph
size increases. For larger graphs, these models fail to find effective in-context solutions, with the best
achieving an average of 78.0 conflicting edges compared to 45.81 with our approach.

Table 14: Number of Particles vs

Qualitative Results. In Figure 12 we show the samples generated with PEM at different timesteps
and particles. We can see that, at timestep ¢ = 30, particle P, generates the first valid solution and
that, at timestep ¢ = 10, all particles have already converged to a valid solution. In Figure 13 we show
an example energy landscape resulting from the composition of two edges, where the optimal solution
corresponds to the minimum of the function. Additionally, in Figure 14 we show the evolution of the
landscape over different timesteps.

Performance with Increased Computation. We assess the effect of increased computation in
Tables 14 and 17. We find that a larger number of particles in sampling slightly improves performance
on the graph coloring task. On average, the number of conflicting edges in the generated solution is
lower with a larger number of particles, meaning that the solution is closer to the optimal solution.

Performance with Increased Timesteps. In Table 18 we evaluate the effect of the timesteps
hyperparameter in the graph coloring performance using the Holme Kim distribution. We observe
that increasing the number of timesteps from 20 to 1000 leads to an average reduction in the number
of conflicting edges, from 6.89 to 6.51 in small instances, and from 44.27 to 42.71 in larger instances.
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Figure 12: Optimized Samples Across Timesteps and Particles. We show samples y*) generated on the
graph coloring problem with PEM (P = 8) at timestep ¢ for different particles P;, where ¢ indicates the particle
number. The graph instance has eight edges, nine nodes and chromatic number xy=2. PEM is able to generate a
valid coloring for the graph (red and gray in the figure).
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Figure 13: Composition of Energy Landscapes. (Left) Energy landscape for different values of ny. from
a simple graph coloring problem with one edge and fixed color red for one node. The plot shows that the
energy assigned to gray color is the lowest. By composing two energy landscapes, we can create a new function
corresponding to a larger problem with two edges. (Right) The energy landscape resulting from composing the
energy landscapes of two edges with one node fixed to color red. The plot shows the energy for combinations of
colors for nodes ns and n3. The assignment no=gray and nz=red yields the lowest energy, indicating that this
is the optimal solution.

Ey(y, t=50) Eo(y, t=35) Ey(y, t=30) Ey(y, t=25) Eo(y, t=5)

Figure 14: Energy Landscapes Across Timesteps. Evolution of energy landscapes over time for a graph
coloring problem with two edges (shown in Figure 13). The landscapes transform a Gaussian distribution into
gradually the target distribution. Eventually, the optimal solution becomes the global minimum of the function.
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EBM (Ours)

Graph % & d x GCN GAT GNN-GCP (P=128)
myciel3 11 20 036 4 17 10 6 2
myciel4 23 71 028 5 71 31 10 9
queen5_5 25 160 053 5 160 160 96 23
queen6_6 36 290 046 7 290 290 116 37
myciel5 47 236 022 6 171 97 42 26
queen?_7 49 476 040 7 476 476 216 64
queen8_8 64 728 036 9 728 728 272 73
1-Insertions_4 67 232 010 5 220 100 42 21
huck 74 301 0.11 11 216 234 172 20
jean 71 254 0.09 10 208 146 206 14
david 87 406  0.11 11 333 352 156 26
mug88_1 88 146  0.04 4 117 127 98 17
myciel6 95 755 017 7 755 755 100 98
queen8_12 96 1368 030 12 1368 1368 408 96
games120 120 638 0.09 9 574 438 418 52
anna 138 493  0.05 11 260 392 110 34
2-Insertions_4 149 541 005 5 270 304 198 64
homer 556 1629 0.01 13 1625 1454 667 69

Table 16: Graph Coloring Evaluation. We compare the performance against canonical GNNs and GNN-based
methods for graph coloring on the COLOR benchmark. For each graph, we report the number of conflicting
edges in the coloring solution, where lower is better. Our methods outperform existing methods on almost all the
instances and shows better generalization to larger graphs.

Conflicting Edges |
Num. Particles Holme Kim Small Holme Kim Large
128 10.60 £ 2.70 59.00 £ 5.24
256 8.38 + 3.28 56.89+12.75
512 9.68 + 3.13 54.68 £ 8.10
1024 7.04 +3.64 57.04 £ 3.27
2048 7.79 £4.20 55.57 £ 4.58

Table 17: Number of Particles vs Conflicting Edges. We report solutions averaged over five instances of each
distribution. Increasing the number of particles with PEM on average decreases the number of conflicting edges
in Holme Kim graph distributions.

Conflicting Edges |
Num. Timesteps Holme Kim Small Holme Kim Large
20 6.98 £ 2.19 44.27+7.29
50 7.01 £2.68 54.40 £ 8.61
100 6.71 £ 2.60 52.97 £8.07
200 6.00 £+ 3.83 50.31 £ 5.76
500 6.50 £+ 2.58 49.63 £+ 3.19
1000 6.51 +2.35 42.71 +3.93

Table 18: Number of Timesteps vs Conflicting Edges. Training with a higher number of timesteps decreases
on average the number of conflicting edges in Holme Kim graph distributions. We report solutions averaged
over five instances of each distribution. In all cases we sample using PEM (P=1024).
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Similar Distribution Larger Distribution Diffusion Contrastive Correct Satisfied

S ! Correct  Satisfied Correct  Satisfied Loss Loss Instances 1 Clauses 1
ampler Instances T Clauses T Instances 1 Clauses T No Yes 0 0.9331 4 0.0258
- - Yes No 11 0.9742 £+ 0.0157
Reverse Diffusion 1 0.9521 0 0.9519 Yes Yes 57 0.9951 + 0.0068
ULA 0 0.9524 0 0.9516
MALA 0 0.9519 0 0.9535 . . .
UHMC 1 09502 0 09537 Table 20: Loss Ablatlon. Ablations proposed
HMC 1 0.9553 0 0.9533 for the loss function on the performance on
EBM (P = 1024) 91 0.9985 43 0.9963 the 3-SAT problem. A combination of both

a diffusion loss to train the EBM and a con-
Table 19: Sampler Ablation. Ablations proposed for samplers trastive loss to shape the landscape leads to
on the 3-SAT task. PEM significantly outperforms other samplers the best results. In all cases we sampled using
on the 3-SAT problem for both similar and larger distributions. PEM (P=1024).

Conflicting Diffusion Contrastive Conflicting
Sampler Edges | Loss Loss Edges |
Reverse Diffusion  19.6 &+ 3.51 ;\IO IYIeS 19%%124%)0

€s o J.! |

1I\J/II;\?‘A ?3(3) i 323 Yes Yes 8.0 +2.64
UHMC 123 +2.51 . i
HMC 14.6 + 0.57 Table 22: Loss Ablation. Ablations proposed
PEM (P =1024) 8.0 +2.64 for the loss function on the performance on

the graph coloring task. We sample three so-
Table 21: Sampler Ablation. Ablations proposed for different lutions for a given graph instance. A combi-
samplers on the graph coloring task. We sample three solutions nation of both diffusion and contrastive loss
for a given graph instance. On average PEM finds solution with a leads to the best results. In all cases we sam-
lower number of conflicting edges. pled using PEM (P=1024).

C Ablation Study

3-SAT Problem. We ablate the sampling procedure in Table 19. We compare the performance of
our method with different samplers. In the similar distribution setting, our method successfully finds
satisfiable solutions in 91 out of 100 instances, whereas baseline samples find at most one. In the
larger distribution setting, our method finds 43 satisfiable solutions out of 100, while baseline samples
do not succeed. We also ablate the training losses in Table 20. A model trained with both diffusion
and contrastive loss solves 57 out of 100 instances, compared to 11 with diffusion loss only and 0
with contrastive loss only.

Graph Coloring Problem. We propose ablations for both training and sampling of EBMs on the
graph coloring task. In Table 21, we show that on average our sampling procedure produces on
average more optimal solutions. In Table 22 we ablate the diffusion loss and contrastive loss used to
train the model. The combination of both losses leads to the best performance.
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